ATP, an agonist at the rat P2Y(4) receptor, is an antagonist at the human P2Y(4) receptor.

نویسندگان

  • C Kennedy
  • A D Qi
  • C L Herold
  • T K Harden
  • R A Nicholas
چکیده

The nucleotide selectivities of the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor stably expressed in 1321N1 human astrocytoma cells were determined by measuring increases in intracellular [Ca(2+)] under conditions that minimized metabolism, bioconversion, and endogenous nucleotide release. In cells expressing the hP2Y(4) receptor, UTP, GTP, and ITP all increased intracellular [Ca(2+)] with a rank order of potency of UTP (0.55) > GTP (6.59) = ITP (7.38), (EC(50), microM). ATP, CTP, xanthine 5'-triphosphate (XTP), and diadenosine 5',5"'-P(1), P(4)-tetraphosphate (Ap(4)A), all at 100 microM, were inactive at the hP2Y(4) receptor. In cells expressing the rP2Y(4) receptor, all seven nucleotides increased intracellular [Ca(2+)] with similar maximal effects and a rank order of potency of UTP (0.20) > ATP (0. 51) > Ap(4)A (1.24) approximately ITP (1.82) approximately GTP (2. 28) > CTP (7.24) > XTP (22.9). Because ATP is inactive at the hP2Y(4) receptor, we assessed whether ATP displayed antagonist activity. When coapplied, ATP shifted the concentration-response curve to UTP rightward in a concentration-dependent manner, with no change in the maximal response. A Schild plot derived from these data gave a pA(2) value of 6.15 (K(B) = 708 nM) and a slope near unity. Additionally, CTP and Ap(4)A (each at 100 microM) inhibited the response to an EC(50) concentration of UTP by approximately 40 and approximately 50%, respectively, whereas XTP had no effect. The inhibitory effects of ATP, CTP, and Ap(4)A were reversible on washout. Thus, ATP is a potent agonist at the rP2Y(4) receptor but is a competitive antagonist with moderate potency at the hP2Y(4) receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of contractile P2Y1, P2Y6, and P2Y12 receptors in rat intrapulmonary artery using selective ligands.

ATP and UDP constrict rat intrapulmonary arteries, but which receptors mediate these actions is unclear. Here, we used selective agonists and antagonists, along with measurements of P2Y receptor expression, to characterize the receptor subtypes involved. Isometric tension was recorded from endothelium-denuded rat intrapulmonary artery rings (i.d. 200-500 μm) mounted on a wire myograph. Expressi...

متن کامل

P2Y2 receptors mediate ATP-induced resensitization of TRPV1 expressed by kidney projecting sensory neurons.

The transient receptor potential vanilloid type 1 (TRPV1) channel is a ligand-gated cation channel expressed by sensory nerves. P2Y receptors are G protein-coupled receptors that are also expressed by TRPV1-positive sensory neurons. Therefore, we studied interactions between P2Y receptors and TRPV1 function on kidney projecting sensory neurons. Application of Fast Blue (FB) to nerves surroundin...

متن کامل

Multiple P2Y receptors couple to calcium-dependent, chloride channels in smooth muscle cells of the rat pulmonary artery

BACKGROUND Uridine 5'-triphosphate (UTP) and uridine 5'-diphosphate (UDP) act via P2Y receptors to evoke contraction of rat pulmonary arteries, whilst adenosine 5'-triphosphate (ATP) acts via P2X and P2Y receptors. Pharmacological characterisation of these receptors in intact arteries is complicated by release and extracellular metabolism of nucleotides, so the aim of this study was to characte...

متن کامل

Comparison of P2 receptor subtypes producing dilation in rat intracerebral arterioles.

BACKGROUND AND PURPOSE P2 receptors are important regulators of cerebrovascular tone. However, there is functional heterogeneity of P2Y receptors along the vascular tree, and the functionality of P2Y receptors in small arterioles has not been studied in detail. We investigated the effects of activating P2Y1 and P2Y2 receptors and their underlying dilator mechanisms in rat intracerebral arteriol...

متن کامل

UDP is a competitive antagonist at the human P2Y14 receptor.

G protein-coupled P2Y receptors (P2Y-R) are activated by adenine and uracil nucleotides. The P2Y(14) receptor (P2Y(14)-R) is activated by at least four naturally occurring UDP sugars, with UDP-glucose (UDP-Glc) being the most potent agonist. With the goal of identifying a competitive antagonist for the P2Y(14)-R, UDP was examined for antagonist activity in COS-7 cells transiently expressing the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 57 5  شماره 

صفحات  -

تاریخ انتشار 2000